Total number and ratio of excitatory and inhibitory synapses converging onto single interneurons of different types in the CA1 area of the rat hippocampus.
نویسندگان
چکیده
The least known aspect of the functional architecture of hippocampal microcircuits is the quantitative distribution of synaptic inputs of identified cell classes. The complete dendritic trees of functionally distinct interneuron types containing parvalbumin (PV), calbindin D(28k) (CB), or calretinin (CR) were reconstructed at the light microscopic level to describe their geometry, total length, and laminar distribution. Serial electron microscopic reconstruction and postembedding GABA immunostaining was then used to determine the density of GABA-negative asymmetrical (excitatory) and GABA-positive symmetrical (inhibitory) synaptic inputs on their dendrites, somata, and axon initial segments. The total convergence and the distribution of excitatory and inhibitory inputs were then calculated using the light and electron microscopic data sets. The three populations showed characteristic differences in dendritic morphology and in the density and distribution of afferent synapses. PV cells possessed the most extensive dendritic tree (4300 microm) and the thickest dendrites. CR cells had the smallest dendritic tree (2500 microm) and the thinnest shafts. The density of inputs as well as the total number of excitatory plus inhibitory synapses was several times higher on PV cells (on average, 16,294) than on CB (3839) or CR (2186) cells. The ratio of GABAergic inputs was significantly higher on CB (29.4%) and CR (20.71%) cells than on PV cells (6.4%). The density of inhibitory terminals was higher in the perisomatic region than on the distal dendrites. These anatomical data are essential to understand the distinct behavior and role of these interneuron types during hippocampal activity patterns and represent fundamental information for modeling studies.
منابع مشابه
The Involvement of Intra-Hippocampal Dopamine Receptors in the Conditioned Place Preference Induced By Orexin Administration into the Rat Ventral Tegmental Area
The activity of dopamine (DA)-containing neurons in the ventral tegmental area (VTA) is a key mechanism in mesolimbic reward processing that has modulatory effects on different diencephalic structures like hippocampus (HIP), and receives inhibitory feedback and excitatory feed forward control. In addition, within the hippocampus, DA receptors are mostly located in the dorsal part (CA1) and dopa...
متن کاملA neural mass model of CA1-CA3 neural network and studying sharp wave ripples
We spend one third of our life in sleep. The interesting point about the sleep is that the neurons are not quiescent during sleeping and they show synchronous oscillations at different regions. Especially sharp wave ripples are observed in the hippocampus. Here, we propose a simple phenomenological neural mass model for the CA1-CA3 network of the hippocampus considering the spike frequency adap...
متن کاملDifferences in Glutamatergic Transmission onto Interneurons and Pyramidal Cells in the Rat Hippocampus
In the human brain there are about 100 billion excitatory glutamatergic neurons and 10 billion inhibitory GABAergic neurons. During development, these neurons are synaptically wired together into neural networks, functionally prepared to perform the full register of brain functions, and to learn from experiences. Much research has focused on the understanding of synapses onto excitatory neurons...
متن کاملThe Involvement of Intra-Hippocampal Dopamine Receptors in the Conditioned Place Preference Induced By Orexin Administration into the Rat Ventral Tegmental Area
The activity of dopamine (DA)-containing neurons in the ventral tegmental area (VTA) is a key mechanism in mesolimbic reward processing that has modulatory effects on different diencephalic structures like hippocampus (HIP), and receives inhibitory feedback and excitatory feed forward control. In addition, within the hippocampus, DA receptors are mostly located in the dorsal part (CA1) and dopa...
متن کاملAcute application of cholecystokinin and its effect on long-term potentiation induction at CA1 area of hippocampal formation in rat
Introduction: It has been demonstrated that cholecystokinin sulfated octapeptide (CCK-8s) can affect synaptic transmission in the hippocampus. Because one of the major experimental models to understand the events happening in synaptic plasticity is To Study the long-term potentiation (LTP), we decided to investigate the effect of concomitant administration of CCK-8s and tetanic stimulation of S...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 19 22 شماره
صفحات -
تاریخ انتشار 1999